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ABSTRACT
The concept of the buckling of an elastic structure subjected to time-
dependent loads is examined critically and criteria for dynamic buckling are
reviewed and discussed. Attention is restricted to structures that are
sensitive to initial imperfections, and hence are prone to catastrophic
failures. Generalized estimates are made for the dynamic buckling strengths

of such structures subjected to various loading histories.

INTRODUCTION

There have been numerous studies in recent years on dynamic buckling,
but this paper does not pretend to survey these developments comprehensively.
Rather, attention will be limited to the recapitulation, assessment, and
expansion of a general approach to the problem that has been presented earlier
(Budiansky and Hutchinson, 1964; Hutchinson and Budiansky, 1966). In this
approach only imperfection-sensitive structures that are prone to catastrophic
buckling failure are explicitly studied. Analytic specification of such
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structures, definitions of dynamic buckling loads, estimates of the loads
and qualitative assesswments of the accuracy of these estimates are among the

topics to be presented.

STATIC AND DYNAMIC LOADS
Static buckling of a structure under dead {constant directional) loading
can be studied by assuming the application of loads q-= Agp » vhere qo 1is
fixed, and where the scalar multiplfer A 1s supposed to increase very slowly
from zero. The critical value A, of this scalar that causes buckling will

S
be called the static buckling load. Dynamic application of the same distribution

of loads gqp will be specified by the time-dependent loading q= Af(t)gp ,
where the time variation £(t) 1is normalized so that its maximum value is unity.
Dycamic buckling for a given f£(t) and go 1s studied in the present approach
by consideration of the ensemble of structural responses associated with the
ensemble of loading histories q= Af(t)gp generated by various values of A .
The critical value of A that corresponds to dynamic buckling will be called

the dynamic buckling load, and designated by A

D .

Criteria for establishing A as well as AD will be described later, but

S
it may be noted now that attention will be restricted to imperfection-sensitive

structures, for which both A, and AD may be greatly influenced bty small

S
geometrical imperfections. It will be assumed that the perfect structure has
associated with it a classical buckling load AC (necessarily bigger than As )
that arises as an eigenvalue in the usual formulation of buckling as an
equilibrium-path bifurcation problem. iost of this paper will be devoted to the
exploration, for various time-variations f(t) , of the relations between the

three critical loads As . Ac , and AD .
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A brief but general discussion of static buckling, based on the theory of
Koiter (1945, 1963), will now be given in order to expose the concept of
imperfection-sensitivity, reveal the meaning of the static buckling load ls .
and lay the foundation for subsequent analyses of dynamic buckling.

STATIC BUCKLING

Field variables and equations

Suppose that under the loading the elastic structure under consideration

-

acquires displacements u , strains ¢ , and stresses o . (These field
variables are to be interpreted in a generalized sense as entities appropriate
to the structure and the theory used in its description. Thus, in a pin-jointed
truss, u would represent the set of joint displacements; in a shell ¢ might
consist of the distributions of the membrane-stress and bending-moment tensors.)

These variables will be required to satisfy the strain-displacement relation
1
£ =1L1(uw) + 5 La(w) 1

where L;y and L; are linear and quadratic functionals respectively; the
stress—-strain relation
o = H(g) (2)

where H is a linear functional; and the variational equation of equilibrium

g-dg = q*8u 3)
In Equation (3) the "dot" operation is a shorthand notation that, in a term
a‘b , means the virtual work of stresses (or loads) a acting through strains
(or displacements) b , integrated over the whole structure. Thus (3) is a
statement of the principle of virtual work and only variations d&u consistent

with boundary ccnditions on displacement would generally be permitted; the

requirement that (3) must hold for all such admissible variations Su together
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with the strain variation &g that follows from (1) will be considered to
guarantee equilibrium of the stresses g and loads q . If the bilinear
functional defined by the identity

La(utv) = La(u) + 2L;33(u,v) + La(v)

is introcduced, then the strain variation 8¢ compatible with &u may be
written as

e = L3 (8u) + L33 (u,8u) (4)

Note that Ljj(u,v) = L;)(v,u) and that Ljj(u,u) = Lp(u) .

It will be convenient to use the additional notation

e = L1(u) (5)
so that
g = Se + L) (u,6u) (6)
Finally, the reciprocal relation
H(g1) g2 = H(g2) 51 ¢)

will be assumed valid for all €; and €; .

Perfect structure; prebuckling, buckling, and post-buckling behavior

Apply the external loads q-= Agg to the perfect structure; it will be

supposed that before buckling occurs the response of the structure is simply
u = Ayg

€= Agg (8)

g = Agg

where the "trivial" displacement satisfies the condition

L1 (uo,v) = 0 (9)

for aill yv . Thus a linear theory 1is presumed valid before buckling, with



£0 = €0 = L1(up) , go = H(ep) , and
g0+be = o8y 10
The occurrence of buckling can be detected by substituting
J u = Aug + Ew
- lcgg + Eg; 1l1)

1 g = A(:‘10 + &0y

teo

into the field equations, linearizing with respect to the scalar £ , and
simplifying the results by using (9) and (10). Then the eigenvalue problem

for the classical buckling load A, and the buckling mode u;,€;,0; is found

c
to be governed by the variational equilibrium equation,

Acgo°L11(uy,6w) + 01°8e =0, 12)

the strain-displacement relation ¢) = e; = Lj(u;) , and the stress-strain
relation 0; = H(e;) . It will be assumed now that only one buckling mode
1s associated with the lowest eigenvalue Ac s although the theory can easily
be extended to cover the technically important case of multiple buckling modes
(Koiter, 1945, 1963; Budiansky and Hutchinson, 1964).
Next, in order to discover how the structure behaves after buckling as=

A deviates from AC » suppose the magnitude of the eigenfunction u; to be
normalized in some convenient fashion and write

u = Ayg + Eu; + 5292 + 5323 + ...

€= Agg + Egy + £2e5 + E3e3 + ... (13)

g = Agg + 01 + £%0; + 303 + ...

where uj,u3,... are all orthogonalized to u; 1in the sense

go-L1{y,u) =0 (n=2,3,...) (14)

Note that (14) also holds for n=0 by virtue of (9), and note also that, as



a consequence of (12), this orthogonality condition implies that
g1°¢, = 0 (n¥1) (15)
which, by (7), implies further that
H(g )-e1 = 0 (n#1) (16)

Also, note that from (12), with 6u=y; , 6e = ¢g; ,

go°La2(u;) = - 3‘1; g1°g1 an

Substituting (13) into the equilibrium equation (3), noting that

8¢ = Se + EL3;(y;,0u) + 52]‘11(22’62) + ...
and using (10) and (12) to simplify the result gives

5{1- %}21‘59
c

+ £2[Ago-L11(uz,8u) + g1°L11(u1,6u) + g°de)
+ 53[Agg°L11(gg,6g) + g3°L11(uz,6u) + 02°Ly3(u;,6u) + g3-ée] + ... = 0 (18)
The choice &Su =u; , 6e = e; = ¢; 1in (18), together with the use of the

orthogonality relations (14) and (15) gives

A
5{1“ 7]21’51 + EZE' 21'1-2(91)] + £3[2g)°Ly)(u1,u2) + g2°La(u)l + ... = 0
C
(19)
This result provides the desired information concerning the post-buckling

variation of ¢ with A ; thus, after buckling,
%=1+a£+b£2+... (20)
C

where

a = ————————— (21)



and
2g; L1 (uy,u2) + g2°La(uy)

b = 22
£1°&1 22)

(The functions u; and 0 needed in the evaluation of b , together with
the strain function g, , satisfy the strain-displacement and stress—strain

relations
£2 = Li(u) + % La(u))
g2 = H(gz)
and, from (18), with 6u chosen orthogonal to u; 1in the sense of (18), (15),

the variational equation of equilibrium

Ago-Ly1(uz,08u) + gz°de + gy°L11(u1,8u) = 0 .)

The variation of A/Ac with £ immediately after buckling is shown by the
solid curves in Figure 1 for the three cases a # 0 ; a=0 , b >0 ; and
a=0,b<0. It will now be shown that imperfection sensitivity is
assoclated with only the first and last of these cases.

Imperfect structures and imperfection sensitivity

To study the influence of initial imperfections, imagine an initial
displacement .é to exist in the unloaded, stress-free structure, and redefine

the strain ¢ 1in terms of the additional displacement u as
- 1 - - .1 -
£ = [Li(ehy) + 5 La(gr)] - [L1(w + 5 La(w)]
=Li(u) + % La(u) + Lyp(u,u)

but continue to impose the stress-strain relation (2) and the equation of
equilibrium (3). An approximate solution is effected by using the solution (13)
for the perfect case in a Galerkin-type solution of (3), with Su = 1; 86 and

e = [e1 + L11(u,u1) + Ly (u,u1)18€ ; this gives




g°Ly1(u,uy)

- 2 - -
(A-A/2)E + ag? + bed + ... e

Now let §_= Egl , and keep only the lowest order term in E to get

(1—A/xc)g +at2 + b3+ ... = %—E (23)
c

as the modification of (20) that accounts for an initial imperfectiorn in the
shape of the buckling mode. The dotted curves in Figure 1 are based on
Zquation (23), and illustrate how small values of £ provide singular
perturbations to the relations conmecting A and £ 1in the perfect case.
it is seen that in the cases az <0 and a=90, b <0 there exist load
mazima in the variations of A with £ . Under monotonicaliy increasing
loading sharp snap-buckling may be expected at these critical values As s

which are less than Ac ; thus, with respect to buckling, the structure is
considered to be imperfection-sensitive for a # 0 , and for b <0 , if a =0 .,
The relations between As and Ac may be estimated for thesertwo cases if €
is assumed sufficiently small. If terms of degree higher than quadratic in ¢§

are neglected in (23) it is easily found by maximizing A that

2 )2 A

S =S
1- 2| + 4af|<2} =0 (24)
[ AC) (“c}

for at <0 . If, however, a = 0 , then keeping terms of third degree in (23)
leads to

2 )3/2 A

1- -2 _i"i,/.—bm_s.,o (25)

A 2 A

C C
for b <0 . It will be convenient, henceforth, to refer to "quadratic
structures” and "cubile structures” as those governed by the cases (1) a ¥ 0

and (11) a =0 , b # 0 , respectively. Note, then, that for quadratic
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1

str:ctures 1-‘23 - O(lElE) , whereas in imperfection-sensitive cubic structures
1- ii-s 0(&2/3) ; thus, roughly speaking, "small' imperfections make "large"
changes in the buckling load.

The above results for static buckling are essentially contained in Koiter's

work; now dynamic considerations will be introduced.
SINGLE-MODE ANALYSES OF DYNAMIC BUCKLING

Modified equilibrium equation; Galerkin solution

To account for imertial forces, it will be assumed that the variational

aquation of equilibrium (3) may generally be replaced by
g+bg = gj&g_— M(g)'ﬁgL (26)

wherein dots represent differentiation with respect to time, and the facter
-M(d) , linear in ii , represents the inertial loading associated with
acceleration. It will be supposed that the reciprocal relation M(u)‘y = M(v)-u
is valid.

Considering first the imperfect quadratic structure under the loading
q = Af(t)qq , seek an approximate solution of (26) in the form

u = Af(thug + E(t)uy (273

If the inertial forces associated with the prebuckling displacements are
neglected -- that is, if M(up) 1s set equal to zero -- it 1ic found that
repetition of the Galerkin solution that led to (23) now gives

[;%]c . [1- 1G] ]e + ag? = [—L’-"f : ]z 28)
1 C C

vhen terms in £ of degree highér than quadratic are dropped. Here

H(uy) -uy
W = —-—————‘:-—
1 are
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and so it is recognized that if u; happens to be a natural vibration mode,
w3 1is its natural frequency; otherwise, wf has an interpretation as a Rayleigh
quotient for frequency-squared, based on the buckling mode u; . It will be
convenient to refer to w; as the ''frequency" of the mode u; , whether or not
this buckling mode is truly a natural vibration mode.
In the case of the cubic structure, assuming

u = xf(t)up + E(t)uy + E2(t)u, (29)

and dropping terms containing M(uz) or M(ug) gives the equation

.-]i..é... 1_M§+bg3- _Aﬂgz (30)
w A A

1 C C

as the result of a Galerkin solution of (29), with du = u;8§ .

Equations (28) and (30) have the simple mechanical interpretation shown
in Figure 2, wherein £ 1is the additional displacement of the central hinge of
the two-bar simply-supported column subjected to an axial load Af(t) . The
bars of unit length are rigid but weightless, the central hinge carries a mass

1 , and the force-displacement relation of the non-linear spring at the central

hinge is either F = K(f+atZ) or F = K(t+bE3) . Then, with mf = K/M and

N
]
N|=

, and an initial displacement ¢ , Equations (28) and (30) govern the

T AR ew A AR R W A wr G G mE e M WS W W W WE e G ar e M wn AR R Er W W W e e Gr @ em es e W=

Note that the neglect of M(uyg) i1s consistent with taking the coefficient
of yp as simply Af(t) in (27) and (29); significant inertial effects
associated with uyg would invalidate this assumption of a "static”
response in the “'trivial” mode. Similarly, neglecting the inertia of the
"contaminating” mode u; 1is consistent with retaining the old static
relation between u; and u; 1in (29). Quite apart from such con-
siderations, it may be noted that the terms M(ug)-u; and M(uz)°u; which
appear in the Galerkin solution of (26) when &u 1s taken as u;6f can
be shown to vanish if u; happens to be a natural vibration mode; under
this circumstance the variational equation of equilibrium for vibration
modes gives w M(ul) 6y = g)°6e , but since, by (15), g3°uz = gj*uyp = 0 ,
it follows tbat M(uy)uz = M(ul)'uo = 0 , whence M(uz)°u; = M(uz)'ul =0
by the reciprocity properties of the operator UM .
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additional displacement £ in the case of quadratic and cubic springs,
respectively.*

Step loading
The imperfection-sensitive cubic structure governed by Equation (30),
with b < 0 , will be studied for the case of step loading, for which
£(t) = H(t) , the Heaviside step function, which vanishes for t < 0 and equals

unity for t > 0 . A first integral of Equation (30) is readily found to be

Fy2 b
£)° 4 |1- 5—- A P [ (31)
2w 2. 4
1 c C
from which it follows that the maximm displacement Emax -- 1f a maximum
exists —— must satisfy
b£3 _
1- .ABJ - xl 3 (32)
c) 2 c
or (see Figure 3)
26+ bg?
C 1€max + 4§

For sufficiently low positive values of A/RC , £(t) 1s bounded and periodic,
(as a phase-plane study of (31) quickly reveals), and Emax is given by th=
lower solution of Equation (32), as shown by the solid part of the curve in
Figure 3. But, as Figure 3 illustrates, for b < 0 , there is a maximum value

of A for which a bounded £(t) exists, and it is this maximum value that

will be defined as the dynamic buckling load AQ.. This critical value RD

satisfies dA/dg = 0 , and for values of A greater than AD the response

- e M G em e MR mw M W MmN e e me Sk GE A @ R Gm GE AR VR W W @k W EE R ek S W W W A e e

In this model, non-linear geometrical effects introduce additional terms
of order E3 which are being ignored relative to those in the non-iinear
spring characteristic.



-12-
E{(t) 1is monotonic and unbounded. It is readily found that RD must satisfy

3
2 3/ /5 1B M
-3 = 2 a. (34
Cc C
The next step sets a pattern to be followed repeatedly in the present studies;
the term v-b IE‘ is eliminated between Equation (34) for dynmamic buckling and

Fquation (25) for static buckling of the same structure with the same

imperfection. This gives as the final result for the analysis of dynamic

buckling of a cubic structure under step loading the relation

(35)

This relation between (XDIAS) and (Aslxc) is shown by the dotted curve in
Figure 4. An entirely similar analysis for a quadratic structure, with

(aE) < 0 , gives the analogous result

- (M
[
AL llA A
) C] -2l D (353
A 3 i ’
S S
-5
n C/ _

represented by the solid curve in Figure 4.

The results (35) and (36) are to be viewed as providing estimates for the
ratio (AD/AS) in an imperfection-sensitive structure in terms of the knowr —-
or assumed -- values of (Asllc) of the same structure. The more imperfect
the structure —- and the greater its imperfection-sensitivity -- the lower will
te ASIAC , and hence the lower will be the ratio AD/AS of dynamic to static
buckiing strength. Note, however, that AD/AS will never be less than ¢2/2 .

Note, too, that the use of these results for AD/AS are consistent with the
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design of structures on a statistical basis; if under the static loading AS
a structure enjoys a certain probability of withstanding static buckling, it

will resist dynamic buckling with the same reliability under the dynamic load

[AD/AS)(AS) when the dependence of (ADIAS) on [AS/AC) is that given by
Figure 4.

impulsive loading

Now consider the impulsive loading specified by the relation
Af(t) = I8(t) (37)
where ¢ 1is the Dirac delta function. Considering first the cubic structure,

it is easily found that

and s0 a first integral of (30) is
_(_%_éz 2 bed 1 (1E)% ,
20 trt =3 A (w?)

A bounded value of (E)max is now found to exist only for I < Icr , where

b
Q

1
cr ' ' /_I

i :h'“
€

and therefore Icr is defined as the dynamic buckling impulse. Eliminating

IEI/:T)' between (38) and (25) now gives

4 w)

Ier = [1-xs/xc]3/2 (39

as the relation between Icr . AS . AC ,and w; . A limiting result for a

very imperfect structure, for which one can let ASIAC = 0 , is simply
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A A
lnd

er 4 |wy .uTl-

(50)
and this could be used as a conservative estimate for Icr for other values
of ASIAC .
Repetition of the analysis for the case of the quadratic structure described

by (28) gives

43 i_S.}
3 {wy]
= 41
cr Al l2 (41)
S
1- .
C
with
XS
1_%2.31|=> (42)
(29 wy

as the critical impulse for the very imperfect structure. Note that, as in the

case of step loading, more conservative answers are given by the cubic structure.

Transient loading

Consider next the rectangular loading history
f(e) = 1 for t < T
f(t) =0 for t <0, t>T
As shown in an earlier paper (Hutchinson and Budiansky, 1966) AD can, again,
be defined as the highest value of ) for which a bounded response exists,
when either (28) or (30) is used to characterize the structure. Fairly strcight-
forward calculation procedures were used to find AD , and typical of the results
obtained are the curves shown in Figure 5, for the cubic structure. Each curve
corresponds to a different value of T/T; , the ratio of the loading duratioa
to the period of vibration T = %f‘ of the buckling mode. Note that the case

T/T} = » 1is the same as the step-loading situation previously considered.
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The most significant implication of Figure 5 is that loads much in excess
of the static buckling load can be applied to imperfection-sensitive structures
without the occurrence of dynamic buckling, if they are removed soon enough;
further, for a given duration of loading, the extent to which the static buckling
load may be exceeded rises very sharply with increasing perfection of the
structure (that is, with increasing ASIAC ).

Informatids cross-plots of the data in Figure 5 are shown in Figure 6,
wherein the finite-time-impulse parameter IT = ADT has been introduced. In
Figure 6, ITIIcr , where Icr , as given by (39), is the zero-time eritical
impulse, is plotted against the load-duration parameter T/T; for various
values of ASIAC . The very important fact shown here is that, contrary to

what might be expected, the zero-time critical impulse is not generally a good

approximation to the finite-time impulse IT needed to produce dynamic buckling.

Indeed, even if T/T; 1is very low, Ict constitutes an unconservative
approximation to IT , except when the structure is quite imperfect
(Az/2; ¥ 1/10) .

Additional results have been given for quadratic structures (Hutchinson
and Budiansky, 1966), and for structures under suddenly applied loads that decey
linearly with time.

Discussion

The results obtained on the basis of the simple equations (28) and (307
should clearly be regarded only as generalized estimates that could be subjzct
to severe limitations on their validity. Perhaps the most serious simplifying
assumption made was that the dynamic response could be described adequately in
terms of the deformation pattern that occurs when the structure buckles

statically. This does not seem too unreasonable in the case of a structure
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having well-geparated eigenvalues as the solutions to the classical static
buckling problem, the lowest of which is associated with a single eigenfunction;
but when these conditions are not met, as in the cases of multiple classical
buckling modes, or when continuous (or nearly continuous) spectra of eigenvalues
exist in the vicinity of the lowest classical buckling mode, the results found
may justifiably be viewed with suspicion.

Other questionable simplifications, perhaps less important, are the neglact
of prebuckling inertia and the disregard of degrees of non-linearity higher
than the lowest. All of these effects will be explored to some extent in the
rest of this paper. But first consideration will be given to generalized
criteria for dynamic buckling, since the simple criterion related to the
existence of bounded solutions that has been used until now becomes inadequate
when idealizations more complicated than those embodied in the simple equations

(28) and (30) are introduced.

GENERALIZED CRITERIA FOR DYNAMIC BUCKLING

Single-mode analyses

If the quadratic model described by (28), with a <0 , £ > 0 , is turaed
into a quadratic-cubic model by the incorporation of a stabilizing cubic term
bE3 , with b > 0 , so that

[;"z}g + {1— %-f-]g +at?2 + bgd = (;—f}i (43)
1 C C
a bounded response E(t) occurs for all A , but sharp definitions of dyaamic
buckling are still often possible. In the case, for example, of step loading,
it is easily shown that, for sufficiently small E , E ax Varies with A as

shown in Figure 7(a), when, as before, ensembles of loading histories AH(t)
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and the associated responses E£(t) are contemplated. At a critical value of
A , to be defined as AD , @ finite jump in Emax is produced by an

infinitesimal increase in XA . From (43), the relation betweem A and £

max
is found to be simply
2ag2
- A —max 1.3 _ [Als
[1 Ac]Emax + 3 + 2 bgmax 2 (Ac]g (44)

but that part of the curve given by (44) that is shown dotted in Figure 7(a)
is without physical significance. (For all X # AD , the response &£(t) 1is

periodic; as A approaches A_ from below the period approaches infinity,

D
and it takes an infinitely long time for £(t) to reach Emax . For A larzer
than AD » the period drops to a finite value again.) The value of AD occuss
at the first maximum of the relation (44) for A vs. gmax , just as Ag is
the first maximum of the static relation between A and £ given by (43) (with
the dynamic term deleted) shown schematically in Figure 7(c).

For E sufficiently large, the variation of )\ with gmax given by (44)
becomes monotonic, as sketched in Figure 7(b), and the sharp definition of AD
afforded by the relation of Figure 7(a) is lost even though for the same value
of £ 1t may still be possible for there to be static snap buckling of the kird
implied by Figure 7(c). It may be desirable, then, to retain the concept of

dynamic buckling by letting AD be associated with the point of inflection irn

the variation of A with gmax . This appears to be a reasonably practical
criterion for AD , 80 long as the inflection in the curve 1is pronmounced enough
to imply that small changes in A near A = AD actually do lead to large
changes in the response.

Apart from the question of defining AD for the system described by (43),
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it may be of interest to examine how much the results found deviate from those
already obtained for b =0 ., Calculations* for the case of step loading give
the curves in Figure 8 for ﬁ% ='§- and %-. The solid parts of the curves
apply when dynamic buckling is associated with the "jump" condition of

Figure 7(a); the dotted portions correspoad to the point-of-inflection criterion
of Figure 7(b). (The curve for b/a? 8'% stops at AS/AC = %- because static
snap-buckling of the kind that corresponds to Figure 7(c) does not occur for
lower values of Aslkc » since even the static curve of A wvs. E becomes
monotonic for imperfections higher than that associated with the end-point of
the curve.) Comparison with the curve for b = 0 , reproduced from Figure 4,
shows that a stabilizing term b3 just makes the old results slightly
conservative. Similar calculations for impulsive loading give the curves of
Figure 9, wherein the ratio of critical impulse to that of the case with

b =0 is given as a function of A /A, for several values of b/a? . Again,
the dotted curves follow from a point-of-inflection criterion. As the auxiliary
sketches show, for b/a? larger than about 1/3 the variation of I with

Cmax no longer displays a very sharp break near the inflection point. Thus,
where Icr retains meaningful significance as a buckling impulse, the simple
model still gives conservative results.

More or less similar trends have been discovered from calculations based

on the differential equation for a cubic—-quartic model

[;12)5 + [1—- %—f-]g + bE3 + cE* = {%ﬁ}z 45)
1 C C
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The author is indebted to Mr. John Wivorkoski for calculating these
results.
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wherein a stabilizing term ct* (c > 0) 1s added to the cubic-model equation
(30). Again, the old results of Figure 4 and Equation (39) are conservative

when the modified definitions of AD or Icr are used, and where the point-

of-inflection criterion really constitutes a sharp measure of buckling.

Multi-mode analyses

Suppose next that the behavior of the dynamical structural system being
studied can no longer be adeguately described on the basis of a single-mode
representation, but rather requires the solution of a set of ordinary, nomlinear

differential equations of the form, say,

{fi’]'én + Q [€1,82,...€ 5af(E)] = O (46)
n
(n=1,2,...N)

Dynamic buckling criteria for the establishment of XA_. of the types suggested

D
by Figures 7(a) and 7(b) could still be used if one of the £'s is used as
abscissa, or, perhaps more appropriately, if the abscissa 1s replaced by scme
overall measure of the response (as, for example, IEI = ; E: Y. In either case
some Interesting questions arise. Is it possible to kno; whether the sharp
Jump criteriorn of Figure 7(a) will apply in the multi-mode case? 1If sc, might

it be possible to estimate ), without the necessity of actually solving the

D
differential equations {46) in detail for many values of X ? Such questions
have recently been discussed by Humphreys (1966) and the remarks that foliow
lean heavily on his observations.

An illustrative two-degree-~of-freedom problem can be associated with the
diagram of Figure 10(a) showing contour lines of constant elevation on a
pecfectly smooth terrain. Imagine a particle of unit mass initially at the

bottom of one of the two bowls (£; = £ = 0) and suppose it to be subjected

to an impulse I 4in the §; direction. It seems evident that there must
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exist a critical impulse just sufficient to send the particle over the pass

into the next bowl, so that a plot of impulse versus the maximum excursion

lE| will exhibit a jump. The kinetic energy imparted to the particle of unit
mass by the critical impulse can clearly not be less than the elevatiom at the
saddle point (3 units) and, indeed, the analogue of this lower bound was
actually used by Hoff and Bruce (1954) to estimate dynamic buckling loads in

an arch buckling problem. But there is no evident reason to expect that an
initial kinetic emergy equal to the saddle point energy is sufficient as well

as necessary for "buckling"” and, unfortunately, it is not clear that the

correct value of Icr can be found without actually solving for £,(t) and
£2(t) for many values of I . Finally, it must be realized that the terrain
might look like that shown in Figure 10(b). The profiles of the surfaces of
Figures 10(a) and (b) are identical along £, = 0 , and suppression of the ¢§;
degree of freedom would be consistent with a jump in the curve of 1 versus

g1 which would then be applicable to both problems. But in the bowl-with-ridge
case of Figure 10(b) a jump can no longer occur when the two-degree-of-freedom
situation is analyzed, although it may still be possible to define a "practical”
1‘cr associated with a point-of-inflection criterion.

It may be remarked that if the functions Qn in (46) are continuous then
over any finite time interval (0,T)} the solutions must be continuous functieas
of A ; the jump criterion for dynamic buckling, if applicable at all, can only
work in principle if the response measure 1s maximized over an infirnite time
interval. Hence, if multi-mode problems are to be studied numerically for the
determination of AD , and solutions are therefore found for finite time
durations, only the point-of-inflection criterion can really be used.

(Numerical calculation has shown, however, that the breaks in the curves of A
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versus maximum response in (0,T) are often so sharp that they look like

discontinuous jumps.)

SOME MULTI-MODE STUDIES

Inertia of the prebuckling mode: Mathieu coupling

The assumption made concerning the neglect of the inertial forces
assoclated with the prebuckling deformation mode up precludes the possibility
of discussing the kind of instability studied by Goodier and McIvor (1964)
wherein oscillations in the prebuckling deformation mode feed energy into a
buckling mode. An attempt will now be made to estimate the conditions under
which this phenomenon might be expected to intrude upon the results that have
been obtained in the present paper for dynamic buckling loads.

Consider the quadratic structure, and replace the Galerkin assumption (27;
by the expression

u = goup + £ 47

in the dynamic equilibrium equation (26). Assuming, for simplicity, that u;

is a natural vibration mode, the varia‘ion 6éu = ug in (26) then gives

[;17}50 +Ep = Af .8
0

where%p terms of order £E2 and £E have been dropped, and where

M{ug) "uo|L
wp = |—————|2 is the "frequency" of the prebuckling mode. Taking &u = u;

Go°Eo0
gives
1) Eo Eo\__
[;z]ix +|1- |61 + ag2 = ;—]E (49)
1 c c

to order £2 . Now consider step loading, for which the solution of (48) 1is

€0 = A(1l-coswgT) (56>
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Substitution of (50) into (49) gives the relation

a2g, A w )2 A wp )2
a-T—Z—-+ 1~r + x ;—0- cosT]§

cjive v
+ (non-linear terms) = All:§2§£2§ (51)
C

where <t = wgt . Now the linear terms in £ are precisely those that appear
in the Mathieu equation, and, in the absence of all of the nonlinear terms in
(51), would lead to instability of the Mathieu type for certain combinations
of A/AC and (w;/wo) . From the known properties of solutions to Mathieu's
equation (see, for example, Stoker, 1950), the following question can now be
answered: For what combinations of ASIAC and [;%} will the linearized
equation (51) have stable solutions when \ = AD , as given by Figure 4? Such
combinations of ASIAC and w;/wg (for ;% < 1) are given by the doubly-
hatched region of Figure 11. In the singly-hatched region, while there is no
Mathieu instability at X = AD » there nevertheless are instzbilities at lower
values of A . This chart completely neglects, of course, interaction between
the two phenomena whose potential interaction is being assessed and must,
therefore, be regarded as no more than suggestive. It is nevertheless difficult
to believe, that for values of wj/wy less than, say, 1/4, there would be any
need for concern about a Mathieu-type instability before the occurrence of
dynamic buckling under step loading. The situation turns out to be not quite

so optimistic for impulsive loading. Impulsive loading Af(t) = I&(t) gives

£p = lwp sinwpt

as the solution of (48), and then the linear, homogeneous part of (49) gives

the Mathieu equation
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d2£1 {wl)z 1wy wy

E;-z—+ —'“;)—‘)'sin‘rﬁl='0

wg A

C
Once again, the known behavior of solutions to Mathieu's equation and the

results found earlier for Icr provides the information in Figure 12(a), the

wi
cross-natched regions of which show combinations of Asllc and ‘;;} for
which Mathieu instability is induced at I = Icr as given by (41), or at some
A
S

lower I . On the other hand, if the conservative estimate Icr = 2.31;;;A is
used, those regions shrink to the domain shown in Figure 12(b).

All of these concerns about the possibility of Mathieu-type resonances
should be tempered somewhat by the realization that Mathieu instability is often
assoclated with many cycles of an oscillgtion that grows in amplitude as
opposed to the "one-shot dynamic buckling contemplated by the criteria of this
paper. Thus, damping may be expected to be more effective in alleviating the
potential dangers of a Mathieu instability than it would in retarding a more-cr-
less monotonic dynamic buckling.

Axially compressed cylinders

The static post-buckling analysis of a long axially compressed circular
cylinder differs from the general patterns already given because there exist
many different modes at one and the same buckling stress. But, following
Koiter, the analysis can be extended to handle such cases, and in the case of
the cylinder an approach that seems to provide insight into the post-buckling
behavior has been followed (Budiansky and Hutchinson, 1964) by letting tke

initial and additional normal displacements be

W= Elw(l) + £2w(2)
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respectively, where w(l)  ig the axisymmetric buckling mode and w(2) g
the square-buckle mode. Using (51) in a Galerkin solution of (26) (in

conjunction with Donnell's equation) then leads to the two coupled equations

, 2.. ( -
LA‘} €y + {1- %5}51 - e€§ - [Agl(il)
\

“1 c Ac
2 ) (52)
- Af =
{;,1—} €2 + |1- £ E2 - l6e£1Ep = i'f‘ €2
WG [ ¢ c
1 3/3(1-v)
where, it turms out, wy; = ;-wl ,and e = ~—§§%—2L . Dropping the time
dependent terms, (and taking f = 1), permitted the evaluatiomn of A, for a

S
varlety of values of El and Ez . Then XD was found, for step-loading,

for the same values of El and 22 , by solving the differential equation
aumerically and using as the criterion for dynamic buckling the sharp
transition from bounded to unbounded response that was very evident from the
numerical results. It was found that the lower curve of Figure 4 always gecve
conservative estimates for lD/As . The lowest values of AD/AS occurxed for

g =0 . For this case, an excellent analytical approximation is found by

neglecting the inertia of the axisymmetric mode, in which cese one finds

1-a /A, 2
[l—_-im] a /2 (AD/AS) (53)

and this equation gives a relation between AD/AS and AC/AS which lies
between the two curves in Figure 4.

Similarly detailed studies have not veen made for impulsive loading but
it is interesting that making the same assumptions &; = O and w; = @ thst

were so useful in the step-loading case leads to

3/6 |1s
4 wy
= A
Icr A2 (5%)

1- 3>

- t C

wn
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which is between the results (39) and (41) for the quadratic and cubic models.
(Here wy 1is %%415 , where R = cylinder radius, E = Young's modulus, and
p = density.)

These results for the cylinder, though they have a certain internal
plausibility, can not, of course, be regarded as more than suggestive of the
range in which critical loads and impulses might lie. The reason is that not
only have just two of the many existing classical modes been considered but
also the multitude of modes associated with eigenvalues higher, but close to,
the lowest critical stress has been ignored. Imperfections in all of these
modes, and the different natural frequencies of the modes, may be expected to
enter into the dynamic buckling process in a way that formulas like (53) and
(54) can simply not encompass. To provide insight into such questions, some
results of a many-mode study of an artificial structure having random
imperfections is given next. As will be seen, the results will suggest that

(54) for impulsive loading is probably less reliable than (53) for step loading.

A SPECIAL MANY-MODE STUDY
The problem to be discussed is that of the static and dynamic buckling of
an infinitely long column (see Figure 13) having a random initial lateral
displacement, and supported laterally by a continuous elastic foundation that

provides the non-linear (cubic) restoring force per unit length

q = kjw - k3w3 (k;,k3 > 0) (55)

where w 18 the additional displacement induced by an axial load Af(t) .

_ This structure may clearly be expected to be imperfection-sensitive, because

of the "softening" spring support. Ignoring (as in the case of the cubic modei

of Figure 2) non-linear geometrical effects, and also neglecting wave effects
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due to axial inertia, permits the derivation of the differential equation of

motion
32w A% 32w 3 %w 5
m 557 + EI =zt Af 3zt kijw - k3w’ = -Af ey (55)

wiere EI 1is the bending stiffness, m 1is mass per unit length, and v is

the initial displacement. The perfect structure has the statig buckling modes

w = sin IEiT%;; corresponding to buckling loads A = (EI kl)z(v+-%) , 80
1

that the critical (lowest) buckling load is A; = AC = 2/EIk , corresponding
to v =1 . The buckling modes are also vibration modes of the unloaded

perfect structure, corresponding to frequencies

1
k
- {;’-Fuwwz

and the frequency of the critical buckling mode is then
kl%
wy = V2 [—;J (57)

The contrast between this structure and the simple model of Figure 2 can now
be underscored. Instead of a single buckling mode associated with a single
buckling load, there is a continuous spectrum of buckling loads and modes;
similarly, there is a continuous spectrum of vibration frequencies. Uncritical
application of the dynamic buckling results for the simple model would involve
only A; , the lowest buckling load, and w; , the frequency of this mode.
But clearly, ome should expect deviations from the elementary results, and the
purpose of this study is to explore these deviations.

The differential equation (56) can now be conveniently non-dimersionalized

by letting A be the root-mean-square value of the initial imperfection w R

snd introducing



W x
us=7= y=—T
A Elfy
k;
-3 wy
u== T = |—I|1
A 2
ro get
i+ uIv + 2 %ﬁ u' +u-rud=-2 l!.;u (58}
A
c C
2 2 ka?
whers () =37 N "3 ° and r = Pl

The problem of finding the static buckling load A, for imperfections

S

described by a stationary random Gaussian function u has been solved

approximately (Fraser, 1965) by the method of equivalent linearization. In thir

£
work the correlation function for u , defined by R(Z) = ii: J u(y)uly+g)ay
) -2
#as chosen as
R(Z) = e-k!;lcos (34 (59)
ziving the corresponding power spectral density
.1 -14C ¢ . k ($2+k24c?)
S(@) 29 I R(C)e dS “[¢u+2(k2_c2)°Z+(k2+c2)2] (60)

-0

The method of equivalent linearization involved the replacement of rud in
Zquation (58) by eu , the subsequent deduction from the static form of (58),

of A2

i

(“2)ave as a function of k , ¢, il" and ¢ , and finally the use
C

of the assumption

4 - 2 ‘ 61\
(u )ave 3(u )ave {61

appropriate to a linear Gaussian process to deduce the coadition
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€ = 3r A2

from the stipulation e(uz)ave - r(u“)ave . With the elimination of ¢ the

implicit relation thus developed between XIAC and A% (for given values of

k , ¢, and r ) then permitted the discovery of a maximum value of A ,

identified as As .

A similar procedure can be followed in conjunction with the full dynamic
equation (58). For the case of step loading, replacing ru3 by pu leads
to the interesting conclusion that as T becomes infinite, a2 approaches a
definite limit that depends only on A/Ac , k,c,and p . In the dynamic
case, the assigmment of a value for p stems from a consideration of an
averaging process involving a first time integral of (58), and gives
p(uz)ave = %‘(u”)ave , 80 that, when (61) 1s invoked, p a‘g-rAz . Elidmination
of p then provides a relation between A/A, and the limiting value of A2
as 1+ » . The condition for calculating the dynamic buckling load AD is,
finally, taken as the non-existence of this limit. An entirely similar
procedure works for impulsive loading and the calculation of Icr .

The details of the calculations described will be presented elsewhere,
but a few interesting numerical results will now be discussed. It was found
that for a very wide range of values of k and c¢ 1in the assumed correlation
function for the imperfections, the variation of AD/AS with ASIAC for the
case of step loading remained in the very narrow band shown in Figure 1l4.
Furthermore, quite independently of k and c¢ , the limiting value of AD/AS
for the case of a very imperfect structure (AS/AC + 0) 1s 2/Y3 % 1.15 .

These results -- dynamic buckling loads higher than static for step
loadings -- seem paradoxical but their derivation is vulnerable only in the

use of the methed of equivalent linearization. With a little effort, it is
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possible to accept their plausibility as a consequence of phase interference
among many modes that happens to be more effective dynamically than statically.*
In any case, the results surely tend to reinforce one's confidence ia the
reliability of the predictions for dynamic buckling under step loading based
on the simple cne-degree-of-freedom models.

The calculations made for impulsive loading do not allow such optimistic
conclusions. Just some results for the limiting case of a very imperfect
structure will be displayed by showing in Figure 15 how the ratio of the

critical impulse I to I » the impulse given by the formula (40) for the

S.M,
simple cubic model, varies with the spectral parameters k and c¢ . The
frequency used in the simple-model formula was (57), that of the critical
buckling mode. Values of this ratio less than unity imply that use of the
simple-model formula would be unconservative, and so, as Figure 15 shows,
unconservatism is the rule rather than the exception over the (k,c) domain of
japerfection spectra. With hindsight, these results are not implansible; the
simple model could be expected to be reliable only if wave numbers in the
vicinity of v = 1 vwere predominant in the buckling process. But for high k ,
the spectrum given by (60) is relatively flat, and for low k and high ¢ ,

the spectra are peaked near v = ¢ ; evidently, the imperfection spectra
strongly influence the subsequent deformation spectra, and so only for low k ,
and ¢ mpear or less than unity are the simple-model results conservative for
impulsive loading.
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If the results are right, mathematically, they imply that a little
damping would permit this ideal structure to withstand a step loading
greater than AS for a while -- but then, as damping gradually

eliminated the oscillations, it would buckle staticaliy!




-30~
CONCLUDING REMARKS

A general theory of dynamic buckling of imperfection-~sensitive elastic
structures has been presented. The results obtained therefrom are helieved to
be widely applicable, but their use must be tempered by careful consideration
of the extent to which the basic assumptions of the theory are met. In
particular, serious deviations from the results of the general theory could
occur when the structure under consideration enjoys a multiplicity of buckling
modes near the lowest classical buckling load, and is subjected to impulsive

or short-duration loadings.
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